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Abstract. In the present article we presented the results of a simu-
lator in order to evaluate the performance of multiagent systems. We
approached the problem of exploration of unknown environments using
three types of agents: one with ample observation capacities but with-
out moving ability, others with big displacement capacity but whose
observation ability is limited to the recognition of their present posi-
tion (explorers), and finally another group of agents with possibilities
of high displacement and load capacity, and narrow sensorial capacity
(shippers).
In this work we also present a proposal about paths memorized by agents,
based on the creation of a tree of obstacle-free paths. This tree is stored
in a blackboard to which all the shipper agents have access, and enables
them to choose the best trajectory from their current position to the
point in which the samples have been discovered. This work also displays
a strategy of collaboration and conflict resolution based on a contract
net-like mechanism.

1 Introduction

The problem which we solved with this multiagent system consists on the ex-
ploration of an unknown environment [12]. This space is composed by a set
of obstacles and samples (objects to be collected) that have to be loaded and
bring to a special point which we will call ET 0. We will analyze three different
approaches to solve this problem:

1. In the first method we have agents who explore and load samples to the
point ET 0 without collaboration.

2. The second approach besides using previous strategy, incorporates collabo-
ration between agents, such that when an agent discovers samples in the
environment, when returning to the point ET 0 it leaves landmarks that can
be used by itself or other agents to follow this way and then go back to the
point where samples were discovered.

3. Our approach is to divide the agents in three different types: the first one
with ample calculation and observation abilities (MR1), the second (MR2)

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 89-98



with great possibilities of displacement and capacities of observation limited
to its present position and the third (MR3) with load and displacement
possibilities as well as capacities of observation limited to its present position.

Proposals one and two were made by Wooldridge in [12], whereas the third
one is our proposal of solution.

1.1 Types of obstacles used in the simulations

In our experiments we used randomly generated obstacles as well as obstacles
with some kind of symmetry that makes some subregions of the environment
become hard to access by the agents.

Fig. 1. Obstacles used in the simulations

The obstacles of the Figure 1.a) were randomly generated in all the search
space . From now on we will call it type 1 obstacle. We will also identify like
this type of obstacle those that are constructed by the user, as it is shown in
Figure 1.b), guided by a graphical software. In the obstacle of Figure 1.c) the
environment is divided vertically. The agents can move from one side to the
other through a small hole placed in the middle of the obstacle. This will be
identified as type 2 obstacle. Figure 1.d) presents a small box that completely
surrounds the point ET 0. This box has a hole in the left bottom corner through
which the agents can leave and go back to ET 0. This obstacle will be identified
as type 3. Figure 1.e) displays an obstacle that is similar to the previous one,
but in each corner of the box, it has a hole. This will be identified as type 4.
The obstacle of type 5, is displayed in Figure 1.f). Like the type 2, has a vertical
line that divides the space in two equal sized areas. Unlike the type 2 obstacle
this one has several random holes. Figure 1.g) shows type 6 obstacle, made up
by two perpendicular lines that divide the search space in four regions of equal
dimension. These lines have several random holes that enable the communication
between different subregions. Finally, in the Figure 1.h) it can be observed the
type 7 obstacle, that like the type 6, has two perpendicular lines but in this case
it only has one hole that connect subregions.
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2 Experimenting with Wooldridge’s proposals

The first solution proposed by Wooldridge [12] consisted in a set of robots that
do not communicate to each other and which behavior were basically reactive.
Robots leave the main ship (in ET 0 point) and begins to explore using random
movements, when an agent finds samples then load them and return to ET 0

following the decreasing gradient field. The other solution given by Wooldridge
consisted in a multiagent system with a cooperative behavior (simple but very
limited). In that case Wooldridge assumes that the agents return to point ET 0

leaving radioactive landmark in the path. Because we couldn’t find numerical
results of Wooldridge proposals, we have to simulate his models in order to
compare these results with our results.

Previously we did some tests to determine the number of runs necessary to
obtain average times that not differ from each other more than 5%.

This strategy of collaboration improves a little the first given solution [2, 6,
7], because it leaves at least a sign of the way to follow from the position of
the samples to the ship. Unfortunately if an agent passes over the marks they
are erased. In addition there is no guarantee that when arriving at the group of
samples at the end of the way they remain there. Another inherent problem is
that when arriving at an intersection of ways, there is not a criteria to decide
which path must be taken.

From results shown in Table 1 we obtain the following conclusions:

1. For the case of obstacle 1 and 4 both models fulfilled the total of the task in
100% of the simulations, but the time for collaboration case was 23% better
for obstacle 1 and 13% better for the obstacle 4, than the time taken by the
simulator without collaboration.

2. In the case of type 3 obstacle the time improvement was 28% and in the
100% of the simulation cases task was completed.

3. When using type 6 obstacle the percentage of success in the total fulfillment
of the task did not improve remarkably, but the total time was improved in
a 28%.

4. For the case obstacle 7 the task fulfillment time was improved as well as the
percentage of times that the simulator completes the task until a 100%.

5. Concerning the obstacles of type 2 and 5 their total time was not improved
but an increase of 32% and 26% was obtained respectively.

3 Description of our proposal

Our environment consists of two dimension finite space, that will be represented
by a matrix ET composed by n × m cells.

Each element ETi,j , 1 ≤ i ≤ n and 1 ≤ j ≤ m they represent only one of the
following components: empty space, a robot mrl

k, a number r ∈ N of samples,
or an obstacle.

The samples located in each grid of the search space, are placed randomly
by the simulator.
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without collaboration with collaboration

Obstacle type Time (s) success percentage Time (s) success percentage

Obstacle 1 574 100 445 100

Obstacle 2 1867 54 4205 86

Obstacle 3 1048 96 761 100

Obstacle 4 468 100 411 100

Obstacle 5 1008 87 2006 100

Obstacle 6 994 92 723 93

Obstacle 7 2856 55 2551 81

Table 1. Simulation results of Wooldridge’s models with and without collaboration
for the seven different obstacle types. We show the total average time to complete the
task and the percentage of success in the different simulations

We also have a distinguished element of ET 0 with coordinates i0 and j0 that
we will defined as starting point and that can be any of the ET cells, with the
constrain of not being surrounded by obstacles preventing the access to this
point.

We also divided the agents in three classes taking into account: its observa-
tion capabilities, processing power [11, 6, 7], displacement abilities and loading
capacities [10]. These classes are:

1. Class MR1: To this class belongs just one agent. It has observation, com-
munication, calculation and storage possibilities, but cannot move. Its ob-
servation capabilities enable him to determine if an obstacle-free straight
path joining two cells ETi,j and ETu,v exists. Similarly it can store the re-
ceived information of the agents of class MR3 (shippers) concerning the
obstacle-free straight paths that have been used to reach some ETi,j . It also
has ample communication capacities that enable him to communicate, as
mediator, with all the remaining agents.

2. Class MR2: Here we will have a set of agents having large displacement and
observation capabilities. We will call them explorers. Their processing and
storage power are small and its main function is to explore the environment
to determine the existence of obstacles and samples. These agents contract
the agents of class MR3 who will make the recollection of the samples. We
will call them mr2

k agents.
3. Class MR3: To this last class belong the agents with large loading and

displacement capacities but with no observation abilities. These agents will
be called shippers and be denoted as mr3

k. These are in charge to collect
the samples and bring them to the ET 0 point. These agents use for their
displacement the obstacle-free segments of the path that already have been
discovered by other agents of the same class and which are stored in the
MR1 agent of class .
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3.1 Behavior of the agents

The explorer agents, in class MR2, leave the ET 0 point, and move randomly,
same as in Wooldrige’s model (we focus our attention improving the efficiency
of our proposal based in cooperation between agents). If a cell is empty (not
occupied by another agent and without obstacles), these agents will move to it.
Once in the cell they verify the presence of samples, and if it is the case, then
begin the hiring of shipper agents process (belonging to MR3 class).

Let us suppose that the explorer agent arrive at the cell with coordinates
u, v in which it discovers samples, then begins a hiring shipper agents process
based on the contract network mechanism [2, 6, 5] and using KQML [9, 3, 8, 4]
as the communication language. The agents messages are sent to a blackboard
where can be read by the rest of the agents on the system. The agent in MR1

is charged to support all the blackboard information. Shipper agents that are
not currently engaged in a task can read the blackboard to see if they find there
hiring messages.

The explorer agents follow a task allocation rule that tries to reduce the
number of agents that participate in the recollection. For that reason, once the
blackboard was reviewed (agents are ordered decreasingly by their loading ca-
pacity) the shipper agents are selected in that order until the amount of samples
detected by the explorer agent can totally be loaded. The idea behind this process
is to have the smallest possible number of agents moving in the search space and
to minimize conflicts produced by crossing paths.

The shipper agents who have been contracted to recollect the samples follow
the next sequence of steps:

1. With the information stored in the MR1 class agent, it determines if between
the points of coordinates u, v and i0, j0 an obstacle-free straight path exists. If
it exists then it follows the straight line segment that join them and publishes
in the tree of discovered paths.

2. If it does not find a straight path in the previous step, then it begins to
consult the information stored in the tree of discovered paths. Whenever
it arrives at a node of this tree it follows the same behavior of the step 1,
to try to arrive at u, v. This process continues until it finds a road. In this
case a new obstacle-free segment is added to the tree. Otherwise the tree of
discovered paths overflows and the task is rejected.

3. If the number of rejected tasks exceeds a given threshold, then the shipper
agents move randomly trying to achieve a point where the recollection task
can be continued and apply the step 1. If this process also fails then the task
is kept in the blackboard for later accomplishment.

3.2 The tree of discovered paths construction

In order to understand how the tree is constructed a hypothetical scene is given
as example in Figure 2.

The node labeled by 0 corresponds to ET 0, the points labeled by 1, 2, 3, 4, 5
and 6, correspond to cells in the neighborhood where there is a certain number
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Fig. 2. Example of construction of the tree of obstacle-free straight paths

of samples to gather. Finally, the segments of straight lines represent obstacles.
Initially the tree is empty. Let us suppose that an explorer agent arrives at
point labeled 2, and at this point we have an obstacle-free straight path. Then
shippers will arrive at this point and will store a first node in our tree having
the coordinates of the achieved point. At this stage the tree is rooted at the
0 node, the coordinates of the point are stored in the node and a descendant
node labeled by 2 is added to it (the coordinates of point 2 are stored in the
corresponding node). This construction stage is displayed in Figure 3.a).

Later the explorer agents discover points 1 and 3, in this order. Given that
they are not reachable by an obstacle-free straight path from 0, then the infor-
mation of the tree is consulted and it is observed that point 1 can be reached
from point 2. This new path is added to the tree as it is shown in the Figure
3.b). Similarly the path to the node 3, from node 2 is added, as it is shown in
the Figure 3.c). After that, points 4, 5 and 6 are discovered, in that order, and
added to the tree as it is shown in the Figure 3.c). It is important to notice that
point 5 cannot be reached before discovering point 4 or 6. It’s clear that this is
not a binary tree because more than two paths can be added to the same node.

Many trees can be constructed for the same environment (depending how
samples are discovered). This is not and issue because the tree only is useful to
access new locations based on previously known locations and not to describe
the environment itself.

This mechanism can fail if there is no reachable point from ET 0 . In order
to avoid this problem the simulator is equipped with a positive integer value
representing the maximum number of allowed failures. When this value is reached
the shipper agents make a first random walk [1]. After that the initial algorithm
is retaken.

3.3 Conflict negotiation between agents ready to collect samples

When an explorer agent mr2
m detects samples, it sends a hiring message to all

the shipper agents. This message is attended by all the shipper agents which are
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Fig. 3. Tree of obstacle-free paths for the example on Figure 2

in the ET o point. The agents that are already making a recolection will not be
able to respond to these messages.

The strategy followed in this negotiation consists on diminishing the number
of agents of class MR3 which participate in the sample recollection. This is made
by taking the agents that have greater lifting capacity, for which the explorer
agent acts like mediator. In this selection process the shipper agents, are sorted
in decreasing order of their lifting capacity, and are seleced those with greater
capacity until achieving the amount of shipper agents needed to collect the
discovered samples.

This strategy has three basic purposes:

– To diminish the number of shipper agents which travel to a point of the
environment. Doing this we can guarantee that having less agents we reduce
the number of conflicts in crossing paths.

– To maximize the amount of collected samples because the agents are loaded
at their full capacity.

– To diminish the amount of information about the environment that must be
stored in the free-path tree discovered that is updated by each recollector
agent who discovers a new path.

3.4 Path conflict resolution by a negotiation mechanism

The negotiation principle followed by the agents in our system tries to optimize
the global objective that is to collect the greatest possible number of samples
in the smallest period of time. Based on this principle, the negotiation between
agents follows the next rules:

1. If an explorer agent mr2
m and a shipper agent mr3

k try to occupy the same
ETu,v cell, the shipper has occupation priority over the explorer agent.

2. If two shipper agents mr3
m and mr3

k try to move to the same ETu,v cell,
the shipper agent who is loaded and is going to deliver its load will have
occupation priority. The agent who can not occupy the cell, begins a random
walk and tries to recover its plan some movements later [1].
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3. If two shipper agents mr3
m and mr3

k try to move to the same ETu,v cell, and
are not loaded then the agent of greater lifting capacity will have ocupation
priority over the other. The other enters into a state of random movements
for recovering later his original trajectory. In the case that both agents have
equal lifting capacity it will be decided randomly who will occupy the cell.

4. If two shipper agents mr3
m and mr3

k try to move to the same ETu,v cell,
and both are loaded then the agent with the greater possible load will have
priority over the other. If both have equal load capacity the decision of who
has priority over the other will be at random. The agent whith less priority
enters into a random movement state and tries to recover its path after
certain number of movements [1].

5. If two explorer agents mr2
m and mr2

k try to move to the same ETu,v cell,
then it will be decided randomly who will occupy the cell.

3.5 Experimental results under our cooperative model

The experiments were made for different proportions of explorer and shipper
agents, going from a 10% to a 90% of explorer agents (increasing by 10% steps
this amount) and for a 95% of explorer agents. Each one of these proportions
was tested with different obstacle types. In Figure 4 we show the average time
necessary to complete the 100% of the sample recollection, applied to different
obstacle types and for each different explorer and recollector agent proportions.
We can draw from Figure 4 the following conclusions:

1. Independently of the obstacle type, it can be observed that the time nec-
essary to complete the task diminishes with the increase on the number of
explorer agents until a value of 80% but it starts to increase again from
this value which is observed for a 90% and 95%. Evidently more samples
are discovered, but there are very few recollector agents to carry out them
and these samples are left idle in the blackboard until a new opportunity
appears.

2. The best proportion between explorer and recollector agents is between 70%
and 80% of explorer agents.

Now we will compare the results obtained with our proposal against the
results obtained using the two Wooldrige’s models. Analyzing the Figure 5 it
can be observed that the average time invested using our proposal to complete
at 100% the task, with the different obstacle types, was significantly less than
the average time under the Wooldridge’s models. Moreover the worst results
produced by our proposal (for the case of a 10% of explorer agents) were better
than the results obtained using the Wooldridge’s proposal.

4 Conclusions

1. Our proposal of agents with different capacities concerning observation ca-
pabilities as well as loading and displacement abilities, outperform the one
that uses only one type of agent proposed by Wooldridge.
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Fig. 4. Times to complete the recollection task with different proportions of explorer
agents and different obstacle types

Fig. 5. Average time comparison between our model with the Wooldridge model for
all the obstacle types
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2. The negotiation and collaboration strategy for resolving conflicts, based on
giving priority to shippers over the explorers, was quite efficient for these
kind of problems.

3. The best performance of the system for the sample recollection, was obtained
when using between 70% and 80% of explorer agents.

4. It has been experimentally shown that learning obstacle-free path method
used in our simulator is a very efficient recognition form of the search space.
In this sense, it must be mentioned that the size of the trees in most of the
cases do not exceed a depth of three levels, and because of that the agents
have a faster way to reach different points of the explored space.

5. The strategy of random movements of the shipper agents used to solve the
problems of unexpected obstacles in their planned trajectories was quite
effective, because noncollected samples never appeared.
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